Edge Detection Improvement by Ant Colony Optimization Compared to Traditional Methods on Brain MRI Image

نویسنده

  • Maya Nayak
چکیده

An image is considered as a set of pixels that are connected in such a manner to form a boundary between two disjoints regions. Typically, the edge detection approach goes through the segmentation process by segmenting an image into regions of discontinuity. Hence it is a technique for marking sharp intensity changes. In this paper, it presents the Ant Colony Optimization based mechanism to compensate broken edges. There are various traditional edge detection techniques as Prewitt, Robert, Sobel, Marr Hildrith and Canny operators. On comparing them, it can be seen that Canny edge detector performs better than all other edge detectors on aspects such as it is adaptive in nature, generally performs better for noisy image by giving sharp images. Also it has been seen that remainders of pheromone trail as compensable edges are needed after finite iterations. Experimental results prove that compared to traditional image edge detection operators, the proposed Ant Colony Optimization(ACO) approach is very efficient in broken edges and more efficient than the traditional ones. The proposed ACO-based edge detection approach is to establish particularly a pheromone matrix that represents the edge information presented at each pixel of the image, according to the movements of a number of ants which are supposed to be dispatched in order to move on the image. General Terms Image Processing, Pattern Recognition, Multi-objective Optimization Algorithms

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Noisy images edge detection: Ant colony optimization algorithm

The edges of an image define the image boundary. When the image is noisy, it does not become easy to identify the edges. Therefore, a method requests to be developed that can identify edges clearly in a noisy image. Many methods have been proposed earlier using filters, transforms and wavelets with Ant colony optimization (ACO) that detect edges. We here used ACO for edge detection of noisy ima...

متن کامل

A hybridization of evolutionary fuzzy systems and ant Colony optimization for intrusion detection

A hybrid approach for intrusion detection in computer networks is presented in this paper. The proposed approach combines an evolutionary-based fuzzy system with an Ant Colony Optimization procedure to generate high-quality fuzzy-classification rules. We applied our hybrid learning approach to network security and validated it using the DARPA KDD-Cup99 benchmark data set. The results indicate t...

متن کامل

Image Edge Detection based on ACO-PSO Algorithm

This survey focuses on the problem of parameters selection in image edge detection by ant colony optimization (ACO) algorithm. By introducing particle swarm optimization (PSO) algorithm to optimize parameters in ACO algorithm, the fitness function based on connectivity of image edge is proposed to evaluate the quality of parameters in ACO algorithm. And the ACO-PSO algorithm is applied to image...

متن کامل

Optimized Adaptive Thresholding based Edge Detection Method for MRI Brain Images

Edge detection is one of the fundamental tool in image processing, machine vision and computer vision, which aim at identifying points in a digital image. It is an important tool for medical image segmentation and 3D reconstruction. Generally, edge has detected according to some early brought forward algorithms such as gradient-based algorithm and templatebased algorithm, but they are not so go...

متن کامل

Image Edge Detection Using Quantum Ant Colony Optimization

Ant colony optimization algorithm (ACO) which performs well in discrete optimization has already been used widely and successfully in digital image processing. Slow convergence, however, is an obvious drawback of the traditional ACO. A quantum ant colony algorithm (QACO), based on the concept and principles of quantum computing can overcome this defect. In this study, a QACO-based edge detectio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016